int. J. Hear Mass Transfer.
Printed in Great Britain

Vol. 37, Ne. 1, pp. 139-151, 1994

4017-9310/94 $6.00 +0.0¢
© 1993 Pergamon Press Lid

A new turbulence model for predicting fluid flow
and heat transfer in separating and reattaching
flows—I. Flow field calculations

K. ABE and T. KONDOH

Toyota Central Research and Development Laboratories, Inc., Nagakute-cho, Aichi-gun,
Aichi-ken 480-11, Japan

and

Y. NAGANO

Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku,
Nagoya 466, Japan

{Received 25 February 1993 and in final form 18 May 1993)

Abstract—To calculate complex turbulent flows with separation and heat transfer, we have developed a
new turbulence model for flow field, which is modified from the latest low-Reynolds-number k—-¢ model.
The main improvement is achieved by the introduction of the Kolmogorov velocity scale, u, = (ve) ",
instead of the friction velocity #,, to account for the near-wall and low-Reynolds-number effects in both
attached and detached flows. The present mode] predicts quite successfully the separating and reattaching
flows downstream of a backward-facing step, which involve most of the essential physics of complex
turbulent flows, under various flow conditions. We have also discussed in detail the structure of the
separating and reattaching flow based on the computational results, and presented several important
features closely related to the mechanism of turbulent heat transfer.

1. INTRODUCTION

IN MANY practical applications, flows accompany sep-
aration and subsequent reattachment, which not only
determine the structure of a flow field but also influ-
ence the mechanism of heat transfer. To evaluate accu-
rately the turbulent heat transfer coefficient in sep-
arating and reattaching flows, it is indispensable to
predict the turbulent flow fields with sufficient accu-
racy.

In most of the previous studies, the k- model
has been used to predict separating and reattaching
turbulent flows (see, for example, Launder [1]). Also,
several attempts to simulate both the flow field and
the heat transfer have been performed {2, 3]. Though
the k—e model is quite useful, major problems remain.
For example, (1) in calculating turbulent flows with
the k—e model, the wall functions are usually employed
as the boundary condition on solid walls. However,
their application to recirculating regions is open to
question. (2) The previous k—& models usually give 15~
20% underprediction of the flow reattachment length
downstream of a backward-facing step [4, 5], which
is the most fundamental quantity to be predicted in
separating and reattaching flows. It is known that the
accurate prediction of heat transfer in separating flows
is impossible without reliable predictions of the flow
in the recirculating region.

On the other hand, today’s k~¢ models have been
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significantly improved so that they may work even
in the vicinity of the wall; they are called the ‘low-
Reynolds-number k-¢ models’. NeSic and Postle-
thwaite [6] performed the calculation of mass transfer
in a separating flow using the Lam~Bremhorst model
{7] at Schmidt numbers higher than 10°. However, as
described below, the Lam—Bremhorst model gives the
incorrect near-wall limiting behavior of the Reynolds
stress, and hence the correct prediction of heat trans-
fer cannot be expected in high Prandt! or Schmidt
number flows. For the accurate prediction of heat
transfer in high Prandtl number flows, we need to
reproduce the near-wall limiting behavior correctly.
Among the existing low-Reynolds-number 4—¢
models, the model developed by Nagano and Tagawa
(hereinafter referred to as the NT model) [8, 9] is
regarded as one of the most reliable. The model can
reproduce the near-wall limiting behavior and pro-
vides accurate predictions for the attached turbulent
flows such as channel and boundary-layer flows with
favorable or adverse pressure gradients. However,
since the model functions of the NT model contain
the friction velocity u,, it breaks down around the
separating and the reattaching points where u, = 0.
Thus, contrary to the real phenomena, the NT model
forces the Reynolds stress to vanish there.

In this study, we propose a new k— model which is
modified from the NT model. The principal improve-
ment is the usage of the Kolmogorov velocity scale
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b, anisotropic tensor, uu;i 2k — 3,3

C, mean skin friction coeficient, 7,,/(pC (/2).
./ (pO22) or —1,/(pUR/2)

mean skin friction coefficient based on
bulk velocity, 1,/(p0%/2)

¢ fluctuating skin friction coefficient

C, mean static pressurc coefficient.
(p- /7<|)v"(/) L"’(jl":)-)
C,.C...C» model constants of k¢ model

D channel width upstream of step

ER  channel expansion ratio, (D+H D

[ f. model functions of low-Reynolds-number
k-& model

H  height of backward-facing step

k turbulent energy, w,u,/2

N: N, numbers of grid points in &- and y-
directions, respectively

b local coordinate normal to wall surface

p mean static pressure

Re, Reynolds number based on channel

centerline velocity, 20,6/v

u Reynolds number based on step height,

O Hov

Reynolds number based on channel bulk

velocity, 207,67y

Reynolds number based on maximum

reverse-flow velocity, — Oy pu/v

Reynolds number based on momentum

thickness, U 0y

Reynolds number based on friction

velocity. w.6/y

R, turbulent Reynolds number, & */ve

t time

U, u; mean velocity and turbulent
fluctuation in /-direction

U, P, W mean velocity in x-, - and =
directions, respectively

w.t.w  lurbulent fluctuation in x-, y- and z-
directions. respectively

U, bulk velocity of fully-developed channel
flow

" nondimensional mean velocity. {in

. Kolmogorov velocity scale, (vi) "

u, [riction velocity, /(t./p)

2

Re,,

Rey

D)

Rel)

Re,

NOMENCLATURE

X, flow reattachment length
N Cartesian coordinate in streamwise
direction with x = 0 at step location

v Cartesian coordinate normal to
streamwisc direction with v = 0 at step
bottom .
- Cartesian coordinate in spanwise dircction |
v nondimensional length from wall surface,
.y
*

nondimensional length tom wall surface,
#opiv

Greek symbols
3 half width of channel
d;  Kronecker delta
¢ dissipation rate of turbulent energy.
\,’{(:W»'QX‘I:)”&{;;‘_;3&;)
n generalized coordinate from lower to
upper walls
0 momentum thickness
K Von Karman’s universal constant, 0.41
kinematic viscosity and eddy viscosity
& gencralized coordinate from inlet to outlet
p density
. model constants in turbulent diffusion
terms of k—& model
7,  wall shear stress
W stream function.

Subscripts

¢ outer edge of boundary layer

i.j 1.2 and 3 denote x-, - and z-directions.
respectively

N maximum reverse-flow point at location x

n normal direction from wall surface

R flow reattachment point

w  wall surface

0 reference value at inlet to back-step
channel (i.e. value at centerline in fully-
developed turbulent channel inflow or
value at free-stream in turbulent
boundary layer inflow)

1 nearest grid point from wall surface.

u, = (ve)"* instead of the friction velocity wu, to
account for the near-wall and low-Reynolds-number
effects. The velocity scale w, becomes zero neither at
the separating nor at the reattaching points in contrast
to the friction velocity u,. Besides this major modi-
fication of the model functions, we have reevaluated
the model constants in the transport equations for the
turbulent energy and its dissipation rate for improve-
ment of overall accuracy. It is shown that the sep-
arating and reattaching flows downstream of a back-

ward-facing step are simulated quite successfully with
the present model. For example, the calculated flow
reattachment lengths, which have been consistently
underpredicted with the previous k- models, are in
excellent agreement with various experiments.

Furthermore, from the computational results. we
have investigated the detailed structure of separating
and reattaching flows and obtained several important
characteristics closely refated to the prediction of the
heat transfer.
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2. GOVERNING EQUATIONS

The governing equations to be solved are the equa-
tion of continuity, the ensemble averaged Navier-
Stokes equation and the equations of the turbulent
energy k and its dissipation rate £:

oU,
oo o
ox,

o0, o0 1

ot 'ox, p 0x,

e 00,

2
&
—_ -, — — — 4
CE] kulu/ axl_ CﬂZ.f;: k ( )
where
oU, 20U\ 2
—UU; = v‘(é_x- + Tx,>— gké,-, (5)
i i
kz
V= C[lf[‘l?' (6)

In equations (1)—(6), f, and f; are the model functions
to account for the near-wall and low-Reynolds-num-
ber effects, and C,, C.,, C.,, o, and ¢, are the model
constants.

3. MODIFIED LOW-REYNOLDS-NUMBER k-
MODEL

3.1. Original Nagano—Tagawa model

In the original NT model, the model functions in
the above equations, which are introduced to reflect
the multiple length scales involved in shear flows and
to satisfy the requirements for the near-wall limiting
behavior of turbulence, are expressed as follows :

el BNk o
e fro o]

®)

where y* =u,y/v and R, = k*/ve. The model con-
stants in equations (3)—(6) are given as follows:

C, = 0.09,
C,\ = 1.45,

o,=14, o.,=1.3,

C.=19. ©)

This model can reproduce the near-wall asymptotic
relations of —uv oc y*, k oc p?and ¢ oc »° quite
correctly [8, 9], and can predict, with very high accu-
racy, the attached turbulent flows with favorable or
adverse pressure gradient [8, 9].

However, equations (7) and (8) contain the friction
velocity u.. Thus, if we apply this model to separating
flows, it will collapse at a separation point (u, = 0)
and also at a reattaching location (u, = 0).

3.2. Modification of model functions

A new velocity scale which replaces the friction
velocity u, is required so that the NT model can be
applied to separating and reattaching flows.

In selecting a new velocity scale, we must satisfy the
following essential requirements from the standpoint
of turbulence modeling.

1. The velocity scale is composed of the charac-
teristic quantities of a turbulent flow.

2. The velocity scale has no singularity at a sep-
arating or reattaching point.

3. The new model functions should reproduce the
near-wall limiting behavior as correctly as the original
NT model. In other words, the selected velocity scale
has a finite value at the wall surface.

In what follows, we evaluate the near-wall limiting
behavior of the velocity. Each component of the vel-
ocity can be expanded in terms of y near the wall as
follows :

O=A,p+A4,0*+ A5+ ...,
V= B,y +Byyi+ ...,

W=Cy+Crp*+Cip’+ ...,
u=a y+ayitay’+...,
byy*+biy*+. ..,

U=

(10)

where y is the distance from the wall surface and
an overbar () denotes the ensemble-averaged values.
The friction velocity u, is expressed as u, = \/ (t4/p),
where t,, = pv(80/dy),, = pvA,. The singularity at a
separating or reattaching point occurs in the NT
model because the velocity scale is determined by the
mean velocity component, i.e. u, = (vA4,) "% It may be
expected that, if we determine the velocity scale by the
characteristic value of turbulence, the above singu-
larity can be removed.

The obvious velocity scale of turbulence is \/k,
which has been most commonly used in various tur-
bulence models (e.g. Lam and Bremhorst [7]).
Recently, Zhang and Sousa [10] proposed the modi-
fication of the Nagano-Hishida model [11] with the
velocity scale replaced by \/k.

Though the models of Lam-Bremhorst and Zhang—
Sousa can avoid the singularity, their crucial weakness
is that the resultant solutions violate the proper near-

w=ec y+e iyt
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wall limiting behavior. From equation (10). the tur-
bulence energy is expressed as follows:

ko= Nai+oiy i+ )

The above equation indicates that & changes lincarly
with r. Thus, the Reynolds stress — v is proportional
to v* in the Lam-Bremhorst model, and v in the
Zhang-Sousa model. both of which counflict with the
correct behavior —we % 17, For the accurale pre-
diction of heat transfer in high Prandt! number fluids.
it is extremely important to reproduce the near-wall
limiting behavior correctly.
Assecn fromequations (10) and (11), /& represents
the fluctuating velocity iself, and has no direet rel-
evance 1o the friction velocity w.. Hence, the choice
of Jk instead of w, is not reasonable. It is more
desirable that a new velocity scale couples in some
physical manner with the fluctuation of the instan-
taneous friction velocity «.2). The intensity of the
fluctuation of lhc instantaneous wall shear stress © (1)
is expressed as follows:

f { uY AN
W o = py/dy.
It \/ \érh PV

On the other hand. the dissipation & ncar the wall
surface is expressed as follows:

C AN AN A\
cu cr oW s
s=v (~>+(w >+(~ )}:"Wﬂ"("{)“‘--~
S Y SOV

(13)

(12)

From equations (12) and (13), we can recognize that
the Kolmooomv velocity  scale  u, = (v}
v /(a4 ¢} 2 is closely related to the measure of the
fluctuating friction velocity {vy f(a;)‘ . Furthermore,
from equation (13), the Kolmogorov velocity scale #,
has a finite value {v/ (a7 +¢H1Y? on the wall surface,
thus satisfying the necessary condition to reproduce
the near-wall limiting behavior —ue o 1°

Accordingly, it is legitimate to introduce the vel-
ocity scale 1, = {ve) ' instead of the {riction velocity
u,. And the model functions may be written as:

S ‘ y .‘\*>l"}) 5 { (Rl“)z}u
= rimuz’k 1a)f T R T 200/

where 1% = u, y/v.

On the other hand, previous studies with the stan-
dard k- model have suffered (rom the fact that the
reattachment lengths of the back-step flow werc
always underpredicted by 15-20% compared with the
experiments. One of the reasons for these under-
predictions is that the wall functions have usually been
employed cven in the separating region. But another

reason might be that the values of the model constants
used are not suitable. Thus, we have reevaluated the
model constants of equatiom (3)-(6). First,
to a standard value of 0.09. because the structure
parameter — ik in scparatmg flows 1s nearly ident-
cal with that in attached flows [12]. Next. (1 is deter-
mined to be 1.9 because {ree turbulent flows are well
reproduced by using the typical vadue of € .= 19
along with the function {1 ~03exp ! —{R 6.5

is s¢t

£ as shown in the NT model [8. 9]

The other constants to be determined are €L 5,

and ¢, In wall-turbulent flows. ¢ ¢, and ¢ musi
satisty the following relation
Co=Che {6

7 O

We have investigated the effect of the model constants
on the computational results, and found that the re-
attachment length of u backward-facing step flow is
sensitive 0 a value of C,,. The reattuchment length
changes by about 0.2 step height with the C, variation
of 0.01. Based on the reassessment, (', is determined
1o be 1.5 as a most appropriate value. and o, 18 put at
1.4 so that cquation {16) may be satssfied. Finally,
following the lead of Nagano er of. [8. 9] that the
correct profile of the eddy viscosity in internal flows
can be obtained by setting o, >~ o .
1.4. which is the same value as in the NT model. In
sum. the present new model uses the following set of
maodel constants

a, 1s assigned 1o

Co=009 0, =14 o =14

o= 1Y tn

4. MODEL ASSESSMENT IN ATTACHED
TURBULENT FLOWS

In our new proposal, we have modificd not only the
model functions but some model constants of the
original NT model. Thus, to confirm the basic accu-

racy of the present model, we have applied it to the
pxcdwuons of the represcntative attached turbulent
flows. i.e. a fully developed channel flow and a boun-
dary layer ﬁow with an adverse pressure gradient. The
latier is known to be difficult wo predict accurately
with the previous k¢ models [8. 9]

The distributions of the vetocity and the eddy vis-
cosily obtained from the present model are compared
with the direct simulation data (DNS) [13]in Fig. |
For both the veloeity and the eddy viscosity, the pres-
ent predictions show good agreement with the DNS
data. In Fig. 2, the computational results for the skin
friction coefficient at various Revnolds numbers are
shown. It can be seen that the present model predicts
accurately the Reynolds-number dependence in a fully
turbulent regime, and for the Reynolds numbet less
than 10* the model reflects reasonably the low-Reyn-
olds-number effect. The almaost perfect agreement in
both skin {riction coefficients in Figs. 2{a)y and (b)
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FiG. 1. Comparison of channel flow predictions with DNS
data (Re, = 395): (a) mean velocity ; (b) eddy viscosity.

indicates that the model captures accurately the Reyn-
olds-number dependence of the wall shear-stress and
the ratio of the centerline velocity U, to the mean
bulk velocity U,. These features pertaining to the
Reynolds-number effects may be quite advantageous
in the model application to more complex turbulent
flows.

The calculation of an adverse pressure gradient flow

. @
10~ e
o o} Present
L F 3\ x  DNS (Kimetal)
O \Q Dean 1
\ ——— Zarbi & Reynolds
1072 F
Laminar Turbulent
vl b e
10-8 Lrena AR
102 10*  Re, 10°
. ®
1071 e
E ] Present
e BN x  DNS (Kim et al)
o [ \\Q Dean |
\ —~—— Zarbi & Reynolds
102
Q\ o ]
B ]
\ e ]
Laminar Turbulent E
10_3 sl rsannl i annl 1,
102 10 Re, 10°

FiG. 2. Friction coefficient of channel flow for various Reyn-
olds numbers: (a) normalized by bulk velocity; (b) nor-
malized by centerline velocity.

0.003
Y
(&)
0.002 | 1
0.001 - A
Present
= e Lam - Bremhorst
[e] Experiment(Samual~Joubert)
0.0 I 1 1
0 2

x(m)

FiG. 3. Friction coeflicient of adverse pressure gradient flow.

is conducted with reference to the experiment by
Samuel and Joubert [14]. The variation of the skin
friction coefficient with a flow development in the
streamwise direction is shown in Fig. 3. It can be seen
that the present results agree with the experimental
data much better than the Lam—Bremhorst model.

The foregoing comparisons demonstrate that the
present model can predict quite accurately the
attached turbulent flows including the effects of both
the Reynolds number and the pressure gradient.

5. APPLICATION TO BACKWARD-FACING
STEP FLOWS

5.1. Numerical procedure and boundary conditions

In calculating the backward-facing step flow, we
used the finite-difference method to discretize the
governing equations, employing the third-order
upwind difference for the convection term in equation
(2), the first-order upwind difference for the con-
vection terms in equations (3) and (4), and the second-
order central difference for the other terms. The cal-
culations were performed by the MAC method. The
generalized coordinate system was employed and the
grid system was non-staggered. Figure 4 shows the
present computational grid systems. The finer-res-
olution grid (Fig. 4(b)) was used to confirm the grid
dependence as described later.

The boundary conditions are: U=V =k =0,
&, = 2vk,/n} and 0p/on = 0 at the wall surface; U, ¥,
k and ¢ are specified from the experimental conditions
together with 0°5/6n =0 at the inlet; and
0Ujox = 6V]ox = 0k/0x = defox = O and p = O at the
outlet. Some explanations would be appropriate for
the boundary conditions of the pressure and the dis-
sipation rate on the wall surface. Strictly, the pressure
gradient normal to the wall surface is ép/dn =
pv(0*0,/dn?). The right hand side, however, is known
to become almost zero at high Reynolds numbers
even in a laminar flow. As described below, we have
confirmed the validity of the present boundary con-
dition, dp/dn = 0, by comparing the computational
results with those obtained with another proper
scheme. The strict boundary condition for ¢ at the
wall, on the other hand, is ¢, = v(8%k/dn?). This type
of boundary condition is, however, unstable in the
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FiG. 4. Grid systems: {a) normal resolution @ (b tiner resolution.

mitial part of the calculation becausc the second-order
derivative cannot be guaranteed to provide the posi-
tive value. Thus, the following conditions are usually
cmployed as the boundary condition for the dis-
sipation rate on the wall surface:

EGKY k,
6, = 2\'( N ) Coor 2y
\ i ",

The validity of the later in equation (18), which is
used here. can be shown with the consideration of the
necar-wall limiting behavior. From equations (11) and
(13). the following relation is obtained

(18)

i M i 2
RAY l\\ = Dy A Tf“ )

i v

=y ey =6, lor v 0. (19)

In this calculation. the grid system is fine enough to
reproduce the near-wall limiting behavior, so that the
boundary condition with the values &, and », at the
nearest grid point from the wall as & and r in equation
(19) 15 sufficiently valid.

The calculations were conducted corresponding Lo
stx individual experimental cases as shown in Tabic 1.

Table 1. Computational conditions for back-step flows

5.2, Eraluation of computational uccuracy

To ascertain the validity of the present caleulation,
we have performed firstly the calculation of the lami-
nar flow with the grid system shown in Fig. 4(a). The
results of the velocity field are presented in Fig. 5. The
reattachment length obtained 18 X/ = 6.43+0.06.
which 15 in good agreement with the result of
Xp/H ~ 6.3 by Kondoh ¢r «f. [21]. In the present
calculation, the uncertainty in the reattachment length
(+0.06) is approximately equal to the width of the
grid spacing near the reattachment point. Further-
more. the center point of the recirculating flow 1s
focated at v/ H ~ 1.85, v, H >~ 0.64. which is consistent
with the result of Kondoh er «f. [21].

Secondly, we have conducted the turbulent flown
calculations corresponding to Case 3 with the two
types ol grid systems shown in Fig. 4 to evaluate the
grid dependence of the computational results. The
comparison is shown in Fig. 6. from which we may
acknowledge the grid-independent solutions in the
calculations.

In addition 1o the above evaluation, we have carried
out the flow calculation corresponding to Case 3 with
the scheme devcloped by Kuno er «f. [22], in which

4 s 0

Case | 2 : §

Data takers Kim [15] Eaton {16} Kasagi |17} Diriver {1%] Vogel [19] Durst [20]
R {5 1.67 1.125 1.25 2.0
Reyg 46 000 38000 5500 38000 28 000 210000
Rel) 1500 1000 500 6500 3500 8000
0. H 0.033 0.025 0.087 0.17 012 0.037
: 285 %75 207 % 125 219 % 125 279 % 125

N o N, 21 x 101 229 101
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I
0 x/H

FI1G. 5. Overview of velocity field in laminar flow (ER = 1.5, Rey; = 150).

only the pressure is located in a staggered manner and
the relevant pressure boundary condition is properly
taken into account. The comparison of the com-
putational results with two types of schemes is also
included in Fig. 6, from which one can see that the
results are identical with each other and the present
calculation procedure based on the MAC method
with the dp/én = 0 pressure boundary condition at
the wall is valid.

These results assure that the present computations
are sufficiently reliable.

6. RESULTS AND DISCUSSION

The predictions of flow reattachment lengths Xz /H
for six test cases are compared with the experiments
in Fig. 7 and Table 2. The compuiational results are
seen to be in excellent agreement with the experiments.
Note that the experimental value of the reattachment

Step Wall

0 02 0.04

F1G. 6. Evaluation of grid and scheme dependence on com-

putational results (Case 3): — 509x149; O 255x75;

[J another scheme (see ref. [22]); (a) pressure on walls:
(b) streamwise velocity ; (c) turbulent energy.

0 0.5 [7/(70 1

length by Kim ez al. [15, 23] was originally (7 1)H,
but Avva et al. [24] reported a corrected value of 7.6 H
which was derived from the pressure distribution on
the wall [25]. As mentioned previously, the re-
attachment lengths have been underpredicted by 15—
20% with the standard k—¢ model. With the present
model, however, we can predict the reattachment
length very accurately. The streamlines in Cases 1, 2
and 3 are depicted in Fig. 8. In all cases, the secondary
recirculation appears near the step corner as is usually
observed experimentally. Furthermore, by comparing
the streamlines for Cases 1 and 3 (Figs. 8(a) and
(c)), we can find the substantial Reynolds-number
dependence of the flow reattachment length with the
channel expansion ratio fixed. The present model may
be the first to predict the Reynolds-number depen-
dence of the flow reattachment length. Figure 7 and
Table 2 suggest that the reattachment length generally
increases with increasing expansion ratio except in

9 —T T T T
$ Experiment Durst—=9
@ Present
P -
= 8 %\Ea!on
~
xn: 7 F voge! N Kim 4
6 | K Kasagi -
Driver
5 . i L ®
1.0 1.5 2.0
ER

Fi1G. 7. Comparison of predicted flow reattachment lengths
with experiments.

Table 2. Comparison of flow reattachment lengths, Xz /H

Case 1 2 3
Present 7.51£0.03 7944003 6.5240.04
Experiment 7+1 7.95 6.51
Case 4 5 6
Present 6.18+0.06 6.594+0.04 8.57+0.04
Experiment 6.21 6.67 8.36
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0 x/H

0 x/H
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(ER=1.5, ReH=5500)

i, 8, Streambines: {a) Case T ih)y Case 20 (9) Case 3.

the low Reynolds number case, This trend was also
indicated experimentally by Eaton and Johnston [26].
The separating streamline and the line of zero strcam-
wise velocity for Case 6 are shown in Fig. 9. compared
with the cxperimental data by Durst and Schmitt {201,
Both of them show almost perfect agreement with the
experiment, which means that the present com-
putational results capture the overall flow patterns in
the recirculating region very well.

The pressure cocfficients on the upper and lower
walls in Cases | and 2 are presented in Fig. 10, Again.
the computational results are seen to agree well with
the experiments.

Figurcs 11 and 12 show the comparisons of the
detailed flow ficld with the experiments of Cases 2 and
3. Casc 2 by Eaton and Johnston [16] is regarded as
the representative experiment on a backward-facing

step flow. And Case 3 by Kasagi er af. [1 7] is regarded
as having very small measurement uncertainty and

i
H
a.
= i e |
~ 0.6 = e} |
> @ |
0.4 + $u0 (Prasent) ”!
= U=0 (Prasent}
0 2 L. Q =0 (Experimam by Dursl) ™ 1
[l T-0 (Experiment ty Durst) F ‘L
§
0.0 1 P L £ o

0 2 4 6 8 10

x/H
FiG. 9. Comparison of flow pattern in recirculating region:
dividing streamline = 0 and trace of the point of zero
streamwise velocity 7 = (.



A new turbulence model for predicting fluid flow—1 147

(a)
0.4 3
Opposite WaIW‘}J
a L
< §P7,000000 00—
0.2 Step Walt 1
0- —
Present
0.0 O [0 Experiment
4] 10 x/H 20
Q.4 ®)
. , ~ P
a [ Opposite Wall R
L&)
0.2 1 Step Wall }
;»Geac’ﬂddda |
0.0 b
Present
0.0 O [] Experiment |
0 5 10 15

x/H

FiG. 10. Pressure coefficient on walls: (a) Case 1 ; (b) Case 2.
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Fi1G. 11. Comparison with experiment of Eaton et af. (Case
2): (a) streamwise velocity ; (b) turbulent energy ; (c) Reyn-
olds shear stress.
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thus highly reliable. Concerning the streamwise
velocity field, the computational results show excellent
agreement with the experimental data in both cases.
The distributions of the turbulent energy agree
reasonably well with the experiments, though there
appears a slight difference in the peak locations and
in the near-wall values in the recirculating region. As
for the Reynolds stress, the computational results of
Case 3 conform well to the experiment. The results of
Case 2, on the other hand, agree very well with the
experimental data in the redeveloping region down-
stream of the reattachment point; but in the recir-
culating region they predict a little higher maximums.

The streamwise variations of the local maximums of
the streamwise turbulence intensity and the Reynolds
shear stress are compared with the experiments in Fig.
13. The computed variations of both quantities are
qualitatively consistent with the experiments, in which
the absolute maximums occur at a location slightly
upstream of the reattachment point. Quantitatively
speaking, the computational results of the turbulence
intensity in Case 1 agree very well with the exper-
iments, but in the other two cases the present com-
putations give slightly lower values than the exper-
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iments, which might be due to the underlying isotropic
assumption of the present model. Concerning the
Reynolds stress, the computational resufts show
slightly higher values in all cases except Driver’s, par-
ticularly in the region around and upstream of the
reattachment point as seen also in Fig. 11(c).

When predicting the heat transfer in turbulent flows
with the k-« model, a vague concept of the turbulent
Prandtl number is usually introduced to express the
eddy diffusivity for heat via the eddy viscosity. To
avoid this questionable assumption, two-equalion
heat transfer models have been developed by Nagano
ef al. [27. 28]. in which as a natural consequence
the eddy viscosity is used as one of the fundamental
parameters in determining the eddy diffusivity for
heat. Thus, for the prediction of complex turbulent
heat transfer, we need a more detailed knowledge of
eddy viscosity behavior in flows with separation and
reattachment. The distributions of the eddy viscosity
are shown in Fig. 14. As shown in Fig. 14(a), the
computed results globally agree with the experiments
(sce the peak value and its location). From Fig. 14(b)
we can grasp the growth mechanism of the eddy vis-
cosity. The computations show almost the same tend-
ency in all cases: (a) the local maximum of cddy
viscosity increases linearly with the distance from the
scparation point; (b) the growth rate becomes satu-
rated at v/Xp =~ 0.7 due to the interaction of the
detached shear layer with the wall surface and to the
subsequent blocking effect of the wall: and (¢) the
eddy viscosity maintains an almost constant valuc
near the reattachment. The eddy viscosity peaks at a
Jocation slightly upstream of the flow reattachment
point. The experimental analysis of Vogel and Eaton
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Fiu. 14 Distributions of eddy visvosity @ {a} comparion with
experiment; (b) streamwise variation ol tocal maximums
normalized by {rec stream veloeity and reattachment length.

[19] has clucidated that the maximum heat transfer is
located slightly upstream of the reattachment point.
which should be noted for being completely consistent
with the tendency of the calculated eddy viscosity. The
maximum eddy viscosity at the reattachment point
normalized by the free stream velocity and the re-
attachment length, v,/{7, X, has almost the same
value of 0.002 in high Reynolds number flows. It is
surprising that, in spite of the calculations under u
variety of conditions, such a unigue trend of the eddy
viscosity is found to exist in all cases of Rey, larger
than 10°.

The comparison of the velocity protile developing
along the opposite wall in Case | is shown in Fig.
15. In the experiment. the wall shear stresses were
obtained by the so-called cross plot technique in which
the universal log-law was assumed. However, recently,
Nagano e/ al. [29] have indicated experimentally that.
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under the adverse pressure gradient, the universal log-
law is no longer valid and the friction velocity is higher
than that obtained by the cross plot technique. The
most recent DNS data on the boundary layer flow
with an adverse pressure gradient (Spalart and Wat-
muff [30]) show the same tendency of the friction
velocity. Figure 15 indicates that the present com-
putational results are in complete agreement with
these latest findings. (Note that the back-step flow
is subjected to the strong adverse pressure gradient
shown in Fig. 10.)

The flow features in the reverse-flow region are
shown in Fig. 16. It can be seen from Fig. 16(a) that
the variations of the local maximum of the reverse-
flow velocity exhibit almost the same trend in accord-
ance with the experimental data. For the relationship
between the Reynolds number and the skin friction
coefficient based on the maximum reverse-flow
velocity, the computational results give the definite
dependency as — C; oc Rey '/, although slightly higher
than in the experiments. In the calculations, the point
of the maximum reverse-flow velocity locates closer
to the wall than in the experiments, so the calculated
friction coefficient becomes larger.

The mean velocity profiles in the recirculating
region are presented in Fig. 17, and the mean (C) and
the fluctuating (Cy) skin friction coefficients along the
wall surface are shown in Fig. 18. From Fig. 17, one
finds the computed velocities are much smaller than
the conventional log-law profile, which qualitatively
supports the experiment of Adams and Johnston [31].
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between wall-layer Reynolds number Rey and skin friction
coefficient.
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For the skin frictions shown in Fig. 18, the com-
putational results are generally higher than the exper-
imental data of Eaton and Johnston [16]. These dis-
crepancies in Figs. 17 and 18 may be due to the same
reason as found in the maximum reverse-flow velocity.
As mentioned previously, the dissipation rate ¢ on
the wall is closely related to the fluctuating friction
coefficient /. Considering the near-wall limiting
behavior, the following relation can be derived:
af
by +3

b = V(@i +c]) =v (20)
where b, is the streamwise anisotropic tensor. From
this relation and equation (12), Cy is expressed in
terms of ¢ and b, as follows:

Py (b1 + )

cr= PNt
' U}

2n

Now, as the first estimation, assuming 5, =~ 0.5 based
on the channel flow data (\/Ef ~ 2\/‘5,2)” we can cal-
culate Cy from the computational results. The present
crude estimation shown in Fig. 18 is higher than in
the experiments of Eaton et ¢/. However, as indicated
by Kasagi et af. [17], b,, can become smaller than b3,
near the reattachment point, so that the calculated C;
will coincide with the experimental level. Additionally,
it is worth noting that the variation of Cf is very
similar to that of the Nusselt (or Stanton) number
shown by Vogel and Eaton [19]. A concrete discussion
on this correlation will be given in a following report.
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Fic. 18. Mean and fluctuating skin friction coefficients on
step wall (Case 2).



7. CONCLUDING REMARKS

We have proposed an improved model ol a low-
Reynolds-number k-« model where 1w, = (va)'
introduced as the velocity scale of turbulence. We
have also recvaluated the model constants so that
both attached and separated wall shear flows can be
predicted accurately.

As a result of these modifications, the mean flows
and turbulent quantitics of a buckward-facing step
flow were predicted quite successfully. The caleulated
flow reattachment length in particular showed excel-
lent agreement with the measurements for a varicty ol
experimental conditions.

Furthermore. we investigated the detailed aspects
of the backward-facing step flow from the com-
putational results, and obtained the following flow
structure: (1) the streamwise variation of the cddy
viscosity normalized by the free stream velocity and
the reattachment length shows almost the same tend-
eney at high Reynolds numbers. {2) The veloctty pro-
files along the opposite wall deviate from the standard
log-law in the reattachment region, which is mainly
duc to the presence of an adverse pressure gradient
in a separating and reattaching flow. (3) With the
information of the anisotropic tensor /. the flue-
tuating friction coefficient €} on the wall can be esti-
mated.

We have also elucidated several flow features which
are closcly reliated to the heat transfer in separating
and rcattaching flows. In particular. it should be men-
tioned that a knowledge of the growth mechanism of
the eddy viscosity is very important to predict the
thermal field near a reattachment point where the heat
transfer coefficient becomes maximum.

Is
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