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Abstract--To calculate complex turbulent flows with separation and heat transfer, we have developed a 
new turbulence model for flow field, which is modified from the latest low-Reynolds-number k-c: model. 
The main improvement is achieved by the introduction of the Kolmogorov velocity scale, II, = (vc)“~, 
instead of the friction velocity u,, to account for the near-wall and low-Reynolds-num~r effects in both 
attached and detached flows. The present model predicts quite successfully the separating and reattaching 
flows downstream of a backward-facing step, which involve most of the essential physics of complex 
turbulent flows, under various Aow conditions. We have also discussed in detail the structure of the 
separating and reattaching flow based on the computational results, and presented several important 

features closely related to the mechanism of turbulent heat transfer. 

1. INTRODUCTION 

IN MANY practical applications, flows accompany sep- 
aration and subsequent reattachment, which not only 
determine the structure of a flow field but also inffu- 
ence the mechanism of heat transfer. To evaluate accu- 
rately the turbulent heat transfer coefficient in sep- 
arating and reattaching flows, it is indispensable to 
predict the turbulent flow fields with sufficient accu- 
racy. 

In most of the previous studies, the k-a model 
has been used to predict separating and reattaching 
turbulent flows (see, for example, Launder [I]). Also, 
several attempts to simulate both the flow field and 
the heat transfer have been performed [2, 31. Though 
the k-c model is quite useful, major problems remain. 
For example, (I) in calculating turbulent flows with 
the li--F model, the wall functions are usually employed 
as the boundary condition on solid walls. However, 
their application to recirculating regions is open to 
question. (2) The previous k-8 models usually give 15- 
20% underprediction of the flow reattachment length 
downstream of a backward-facing step [4, 51, which 
is the most fundamental quantity to be predicted in 
separating and reattaching flows. It is known that the 
accurate prediction of heat transfer in separating flows 
is impossible without reliable predictions of the flow 
in the recirctnating region. 

On the other hand, today’s k-8 models have been 

significantly improved so that they may work even 
in the vicinity of the wall ; they are called the ‘low- 
Reynolds-number k-s models’. NeSik and Postle- 
thwaite [6] performed the calculation of mass transfer 
in a separating Row using the Lam-Bremhorst model 
[7] at Schmidt numbers higher than 10’. However, as 
described below, the Lam-Bremhorst model gives the 
incorrect near-wall limiting behavior of the Reynolds 
stress, and hence the correct prediction of heat trans- 
fer cannot be expected in high Prandtl or Schmidt 
number flows. For the accurate prediction of heat 
transfer in high Prandtl number flows, we need to 
reproduce the near-wall limiting behavior correctly. 
Among the existing low-Reynolds-number k-c: 

models, the model developed by Nagano and Tagawa 
(hereinafter referred to as the NT model) [S, 91 is 
regarded as one of the most reliable. The model can 
reproduce the near-wall limiting behavior and pro- 
vides accurate predictions for the attached turbulent 
flows such as channel and boundary-layer flows with 
favorable or adverse pressure gradients. However, 
since the model functions of the NT model contain 
the friction velocity u,, it breaks down around the 
separating and the reattaching points where u, = 0. 

Thus, contrary to the real phenomena, the NT model 
forces the Reynolds stress to vanish there. 

In this study, we propose a new k-E model which is 
modified from the NT model. The principal improve- 
ment is the usage of the Kolmogorov velocity scale 
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NOMENCLATURE 

anisotropic tcnsol-. rf,u,:ZX --. 6,,, 3 
mean skin friction coefficient, ~,,:(j)c,::I!), 
s,,;(j~O,‘?) or -r,,/(j~Ui/Z) 
mean skin friction coefficient based on 

bulk velocity, ~,j(pg~,b:2) 
R uctuati]~E skin friction coeficicnt 
mean static pressure coefficient. 
(jl--jj,,,;(j)l”f,‘3) 

c,,, t: j. t’ 3 model constants of k--c: model 
I) channel width upstream of step 
ER channel expansion ratio, (D-t H );I> 
&/a: modct ful~~tiolls of low-Reynolds-nutnbci 

h -i: model 
H height of backward-facing step 
/i turbulent energy. u,L/,/~ 
NC. fi,, numbers of grid points in <- and PI- 

directions, respectively 
local coordinate normal to wail surface 

mean static pressure 
Reynolds number based on channel 
centerline velocity, 20C,6/\’ 
Reynolds number based on step height, 
r;!,,rr:r 
Reynolds number based on channel bulk 
velocity, Zl;‘,,,iiii 
Reynolds number based on maximum 
rcvcrse-Row velocity. -- Ch ~l~l.i\, 
Reynolds number based on momentum 

thickness. C&/P 
Reynolds number based on friction 
velocity. qS. 13 

turbulent Reynolds number, k‘:‘~: 
time 

n,. 11, mean velocity and turbulent 
fluctuation in i-direction 

0. c?. @ mean velocity in Y-. J’- and r- 
direcLions, rsspcclively 

U, 1’. w turbulent fluctuation in s-. r- and Z- 
directions. respcctivcll 
bulk velocity of fully-developed channel 
1lOVV 

nondimensional mean velocity. lY:il 
Kolmogorov velocity scale. (~2:) ’ ’ 
friction velocity, ,/(I,, :j’) 

.Y ,a flow reattachment length 

.I Cartesian coordinate in streamwise 

direction with .Y = 0 at step location 

J’ C’artcsian coordinate normal to 
streamwisc direction with J‘ = 0 ai step 
i)ifttml 

- (‘artesian coordinate in spanwisc direction 

1’ nondimensional length from wall surfilce. 

I,. 1‘ I’ 

1.* nondimensional Icngth from wall surface. 
i, I‘, \‘. 

Greek symbols 

(5 half width of channel 

4, Kroneckcr delta 

ii dissipation rate of turbulent energy. 

\‘(;zl,:i’.~,)(dU,ii\.,f 

v gcncral&d coordinate from Jowcr to 
upper walls 

tl momentum thickness 
Ii Von KLirmHn’s universal constant, 0.41 
Y, 1’S kinematic viscosity and eddy viscosity 

i generalized coordinate from inlet to outlet 

I’ density 

fl/. . fl model constants in turbulent diffusion 

terms of k---r: model 

7 .\ wall shear stress 

I// stream function. 

Subscripts 

e 
i, i 

N 
I? 

R 
w 
0 

I 

outer cdgc of boundary layer 
1. 2 and 3 denote .Y-. J- and z-directions. 

respectively 
maximum reverse-flow point at location .\ 
normal direction from wall surface 
ilow r~~~ttachment point 
wall st1rface 

reference value at inlet to back-step 
channel (i.e. value at centerline in fully- 
developed turbulent channel inflow or 
value at free-stream in turbulent 
boundary layer inflow) 
nearest grid point from wait sureace. 

y. is (1’8) ’ ’ instead of the friction velocity ui to 

account for the near-wall and load-Reynolds-number 
effects. The velocity scale U, becomes zero neither at 
the separating nor at the reattaching points in contrast 
to the friction velocity II,. Besides this major modi- 
fication of the model functions. wc have reevaluated 
the model constants in the transport equations for the 
turbulent energy and its dissipation rate for improvc- 
ment of overall accuracy. It is shown that the scp- 
arating and reattaching flows downstream of a back- 

ward-facing step arc simulated quite succcsst‘ully with 
the present model. For example. the calculated fiow 
reattachment lengths, which have been consistently 
underpredicted with the previous k--c models, arc in 
excellent agreement with various experiments. 

Furthermore. from the computational results. we 
have investigated the detailed structure of separating 
and reattaching Aows and obtained several important 
characteristics closely related to the prediction of the 
heat transfer. 
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2. GOVERNING EQUATIONS 

The governing equations to be solved are the equa- 

tion of continuity, the ensemble averaged Navier- 

Stokes equation and the equations of the turbulent 
energy k and its dissipation rate I: : 

(1) 

where 

In equations (l)-(6), f;< andf, are the model functions 
to account for the near-wall and low-Reynolds-num- 
ber effects, and C,,, C, ,, Czz, ok and cri are the model 
constants. 

3. MODIFIED LOW-REYNOLDS-NUMBER k-c 

MODEL 

3.1. Original Nagano-Tagawa model 
In the original NT model, the model functions in 

the above equations, which are introduced to reflect 
the multiple length scales involved in shear flows and 
to satisfy the requirements for the near-wall limiting 
behavior of turbulence, are expressed as follows : 

.f,= jl-exp(-$Jr(l+$) (7) 

h= {l-exp(-$)r[l-0.3exp{-(&J}] 

(8) 

where y+ = u,y/v and R, = k2/ve. The model con- 
stants in equations (3)-(6) are given as follows : 

c,, = 0.09, fJ/, = 1.4, 6, = 1.3, 

c,, = 1.45, C,? = 1.9. (9) 

This model can reproduce the near-wall asymptotic 

relations of -uu cc y3, k cc y2 and E cc y” quite 

correctly [8, 91, and can predict, with very high accu- 

racy, the attached turbulent flows with favorable or 
adverse pressure gradient [8, 91. 

However, equations (7) and (8) contain the friction 

velocity u,. Thus, if we apply this model to separating 

flows, it will collapse at a separation point (u, = 0) 
and also at a reattaching location (uz = 0). 

3.2. Modification oj’modelfhctions 
A new velocity scale which replaces the friction 

velocity U, is required so that the NT model can be 
applied to separating and reattaching flows. 

In selecting a new velocity scale, we must satisfy the 

following essential requirements from the standpoint 

of turbulence modeling. 

1. The velocity scale is composed of the charac- 
teristic quantities of a turbulent flow. 

2. The velocity scale has no singularity at a sep- 

arating or reattaching point. 
3. The new model functions should reproduce the 

near-wall limiting behavior as correctly as the original 
NT model. In other words, the selected velocity scale 
has a finite value at the wall surface. 

In what follows, we evaluate the near-wall limiting 

behavior of the velocity. Each component of the vel- 
ocity can be expanded in terms of y near the wall as 
follows : 

8= B2y2+B,y3+-. . , 

W= C?y+C2y2+C3y’+ . . . . 

u=aly+a2y2+a3y3+..., 

I_, = bzy2+b,y3+ . . . . 

w = c, y+c*y2+c,y3+. , (10) 

where y is the distance from the wall surface and 
an overbar (-) denotes the ensemble-averaged values. 
The friction velocity u, is expressed as u, = ,/(7,/p), 

where z, = pv(dn/lay), = pvA ,. The singularity at a 
separating or reattaching point occurs in the NT 
model because the velocity scale is determined by the 

mean velocity component, i.e. U, = (v&) ‘j2. It may be 
expected that, if we determine the velocity scale by the 
characteristic value of turbulence, the above singu- 
larity can be removed. 

The obvious velocity scale of turbulence is Jk, 
which has been most commonly used in various tur- 
bulence models (e.g. Lam and Bremhorst [7]). 
Recently, Zhang and Sousa [lo] proposed the modi- 
fication of the Nagano-Hishida model [I I] with the 
velocity scale replaced by Jk. 

Though the models of Lam-Bremhorst and Zhang- 
Sousa can avoid the singularity, their crucial weakness 
is that the resultant solutions violate the proper near- 



On the other hand, previous studies with the stan- 

dard k i; model have su&red l’rom the ficl that the 

rcattachtncnt lengths of the hack-step flow wcrc 

always underpr~di~ted by 1.5-20% ~[~rn~~r~d with the 

experiments. One of the reasons for these undcr- 

predictions is that the wali functions have usually been 

employed cvcn in the separating region. But another 



A new turbulence model for predicting fluid tlow-I 143 

(a) 

@I 
4o - 

- Present - 

0 DNS 

0 0.5 
Y/ 6 

1 

FIG. 1. Comparison of channel flow predictions with DNS 
data (Re, = 395) : (a) mean velocity; (b) eddy viscosity. 

indicates that the model captures accurately the Reyn- 
olds-number dependence of the wall shear-stress and 
the ratio of the centerline velocity l?, to the mean 
bulk velocity u,,,. These features pertaining to the 
Reynolds-number effects may be quite advantageous 
in the model application to more complex turbulent 

Bows. 
The calculation of an adverse pressure gradient flow 
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FIG. 2. Friction coefficient of channel flow for various Reyn- 
olds numbers: (a) normalized by bulk velocity; (b) nor- 

malized by centerline velocity. 
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FIG. 3. Friction coefficient of adverse pressure gradient flow. 

is conducted with reference to the experiment by 
Samuel and Joubert [14]. The variation of the skin 

friction coefficient with a flow development in the 
streamwise direction is shown in Fig. 3. It can be seen 
that the present results agree with the experimental 
data much better than the Lam-Bremhorst model. 

The foregoing comparisons demonstrate that the 

present model can predict quite accurately the 
attached turbulent flows including the effects of both 
the Reynolds number and the pressure gradient. 

5. APPLICATION TO BACKWARD-FACING 

STEP FLOWS 

5.1. Numerical prvcedure and boundarv conditions 
In calculating the backward-facing step flow, we 

used the finite-difference method to discretize the 
governing equations, employing the third-order 

upwind difference for the convection term in equation 
(2), the first-order upwind difference for the con- 
vection terms in equations (3) and (4), and the second- 
order central difference for the other terms. The cal- 
culations were performed by the MAC method. The 
generalized coordinate system was employed and the 
grid system was non-staggered. Figure 4 shows the 
present computational grid systems. The finer-res- 

olution grid (Fig. 4(b)) was used to confirm the grid 
dependence as described later. 

The boundary conditions are: 0 = v = k = 0, 
E, = 2vk,/n: and $7/&r = 0 at the wall surface; 0, v, 
k and E are specified from the experimental conditions 
together with a$/%’ = 0 at the inlet; and 
aiT/ax = dVjax = akjax = aEpx = 0 andp = 0 atthe 
outlet. Some explanations would be appropriate for 
the boundary conditions of the pressure and the dis- 
sipation rate on the wall surface. Strictly, the pressure 
gradient normal to the wall surface is 2p/&t = 

pv(a2un/an2). The right hand side, however, is known 
to become almost zero at high Reynolds numbers 
even in a laminar flow. As described below, we have 
confirmed the validity of the present boundary con- 
dition, ap/an = 0, by comparing the computational 
results with those obtained with another proper 
scheme. The strict boundary condition for E at the 
wall, on the other hand, is E, = v(a2k/&z2). This type 
of boundary condition is, however, unstable in the 



initial part ofthc calculation hccauxc the second-orticl 

derivative cannot hc guaranteed to provide the posl- 

tivc‘ value. Thus, the following conditions arc usually 

employed as the boundary condition for the diy- 

sipation rate on the wall surface : 

The validity of the later m equation (IX), \\hlch is 

used here. can be shown with the consideration of the 

near-wall limiting hchahior. From equations ( I I ) and 

(I 3). the following rclatlon is obtained : 

-= I,( iI/ :- ( , ) = i.,, for 13 +I). (IO) 

In this calculation. the grid system is fine enough to 

reproduce the near-wall limiting hchavior. so that the 

hotmdary condition with the \alucs h, amd II, at the 

nearest grid point flom the \nall ah ii and 1’ in ccl uation 

(19) is suflicicntly \;rlid. 

The calculations \+crc conductcti colrespondmg to 

six individual cxperimcntal cases as shown in Tahlr I 

To ascertain the validity of the prcscnt calculation. 

we have performed firstly the calculation of the lami- 

nar flow with the grid system shown in Fig. 4(a). The 

results of the velocity field arc presented in Fig. 5. The 

rcattachmcnt length obtained i\ .Y,,/II = 6.43 :tO.OS. 

which i,, in good agreement with the result of 

I,,:/{ - 6.3 by Kondoh CI L//. [?I]. In the present 

calcul;ttion. the unccrtaint> in the reattachment length 

( :O.Oh) is approximately equal 10 the width of the 

grid spacing ncal- the rcattachmcnt point. Further- 

more. the ccntcr point 01‘ the rccirculatinf tlo\+ is 

located at \-‘I{ = I .8S. J’ Ii L 0.64. which is consistent 

v,ith the result of Kondoh cl c/i. [?I]. 

SecondI>. WC have conducted the turhulcnt llo~ 

alculations corrcspondin, ~7 to (‘asc 3 with the two 

t! pc5 of grid systems StlObVil in Fig. -I to e\aluatc the 

gid dcpcndencc of the computational results. l%c 

comparison IS shown in Fig. 6. from which ae ma) 

acknowled_rc the grid-indcpcndent solutions in I~C 

cillcula!i0n\. 

In atlditlon to the above cvaluatlon. WC have cklrrlcd 

out ~hc How calculation corresponding to Case 3 *lth 

the schcm~ devclopcd by K tmo c’t (I/. [22], In M hich 
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I I I I 1 
0 x/H 5 6 7 8 

FIG. 5. Overview of velocity field in laminar flow (ER = 1.5, He,, = 150) 

only the pressure is located in a staggered manner and 
the relevant pressure boundary condition is properly 
taken into account. The comparison of the com- 
putational results with two types of schemes is also 
included in Fig. 6, from which one can see that the 
results are identical with each other and the present 
calculation procedure based on the MAC method 
with the @i/&z = 0 pressure boundary condition at 
the wall is valid. 

These results assure that the present computations 
are sufficiently reliable. 

6. RESULTS AND DISCUSSION 

The predictions of flow reattachment lengths X,/H 

for six test cases are compared with the experiments 
in Fig. 7 and Table 2. The compuiational results are 
seen to be in excellent agreement with the experiments. 
Note that the experimental value of the reattachment 

0.4 1 (a)m I I I 
u” 
0.2 

0 

0 

0 10 X/H 20 

CC) 

0 0.5 il/& 1 0 k/i@’ 0.02 0.04 

FIG. 6. Evaluation of grid and scheme dependence on com- 
putational results (Case 3) : - 509 x 149; 0 255 x 75; 
0 another scheme (see ref. [22]) ; (a) pressure on walls; 

(b) streamwise velocity; (c) turbulent energy. 

length by Kim et al. [15, 231 was originally (7+ l)H, 
but Avva et al. [24] reported a corrected value of 7.6H 
which was derived from the pressure distribution on 

the wall [25]. As mentioned previously, the re- 
attachment lengths have been underpredicted by 15- 
20% with the standard k-E model. With the present 
model, however, we can predict the reattachment 
length very accurately. The streamlines in Cases 1, 2 
and 3 are depicted in Fig. 8. In all cases, the secondary 
recirculation appears near the step corner as is usually 
observed experimentally. Furthermore, by comparing 
the streamlines for Cases 1 and 3 (Figs. 8(a) and 
(c)), we can find the substantial Reynolds-number 
dependence of the flow reattachment length with the 

channel expansion ratio fixed. The present model may 
be the first to predict the Reynolds-number depen- 
dence of the flow reattachment length. Figure 7 and 
Table 2 suggest that the reattachment length generally 
increases with increasing expansion ratio except in 

9 - 

8 - 

e 
$7 - 

6 . 

5 ’ I I t 

1 .o 1.5 2.0 
ER 

FIG. 7. Comparison of predicted flow reattachment lengths 
with experiments. 

Table 2. Comparison of flow reattachment lengths, X,/H 

Case 1 2 3 

Present 7.51 io.03 7.94kO.03 6.52kO.04 
Experiment 7_+1 7.95 6.51 

Case 4 5 6 

Present 6.18kO.06 6.59+0.04 8.57+0.04 
Experiment 6.21 6.61 8.36 



(ER=1.5, Re~=46000) 

I I I I I 1 
0 x/H 5 6 7 8 9 

(ER=f.67, R~~=38000) 

the low Reynolds number case. This trend was also 

indicated expcrirnentally by Eaton and Johnston [26]. 

The separating streamline and the line of zero strcam- 

wise velocity for Case 6 a-e shown in Fig. 9. compared 

with the cxpcrimental data by Durst and Schmitt [?(I]. 

Both of them shou atmost perfect ~~re~~ll~~lt with the 

cxpcriincnt, which means that the present corn-- 

putational results capture the overall flow patterns in 

the recirculating region very well. 

The pressure coefficients on the upper and lower 

walls in Cases I and 2 are presented in Fig. IO. Again. 

the computational results arc seen to agree well with 

the experiments. 

Figures I I and 12 show the comparisons oT the 
detailed flow ficld with the experiments of Cases 2 and 
3. Case 2 by Eaton and Johnston [16] is regarded as 
the representative experiment on 3 backward-facinp 

0 2 4 6 8 10 
x/H 
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FIG. t 0. Pressure coefficient on walls : (a) Case I ; (b) Case 2. 

(a) 
- Present 

0 Experiment(Eaton) 

2 4 6 8 IO I2 x/H 

(b) 
- Present 

0 Experiment(Eaton) 0.0 0.04 

2 
? x 

1 

0 
2 4 6 8 IO 12 x/H 

cc> 
- Present 

0 Experiment(Eaton) 0.0 0.02 

2 
? x 
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FIG. 11. Comparison with experiment of Eaton ef al. (Case 
2) : (a) streamwise velocity: (b) turbulent energy; (c) Reyn- 

olds shear stress. 
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’ 02468 10 x/H 

(b) 
- Present 

0 3 Experiment(Kasagi) 0.0 0.04 

c 
2 

%l 

0 
0 2 4 6 8 10 x/H 

(c) 
- Present 

Experiment(Kasagi) 0.0 0.02 

c 
2 

hl 

’ 02468 10 x/H 

FIG. 12. Comparison with experiment of Kasdgi et al. (Case 
3) : (a) streamwise velocity ; (b) turbulent energy ; (c) Reyn- 

olds shear stress. 

thus highly reliable. Concerning the streamwise 
velocity field, the computational results show excellent 

agreement with the experimental data in both cases. 
The distributions of the turbulent energy agree 
reasonably well with the experiments, though there 
appears a slight difference in the peak locations and 
in the near-wall values in the recirculating region. As 
for the Reynolds stress, the computational results of 
Case 3 conform well to the experiment. The results of 
Case 2, on the other hand, agree very well with the 
experimental data in the redeveloping region down- 
stream of the reattachment point; but in the recir- 
culating region they predict a little higher maximums. 

The strcamwise variations of the local maximums of 
the streamwise turbulence intensity and the Reynolds 
shear stress are compared with the experiments in Fig. 
13. The computed variations of both quantities are 
qualitatively consistent with the experiments, in which 
the absolute maximums occur at a location slightly 
upstream of the reattachment point. Quantitatively 
speaking, the computational results of the turbulence 
intensity in Case 1 agree very well with the exper- 
iments, but in the other two cases the present com- 
putations give slightly lower values than the exper- 



* 0 L.______._.__..~-....._. .___~ i 
0 1 

X/XR 
2 

imcnta, which might be due to the underlying Isotropic 
assumption of the present model. C’onccrning the 
Reynolds stress, the computational results show 
slightly higher values in all cases except Driver‘s, par- 
ticularly in the region around and upslrmm of the 
reattachment point as seen also in Fig. I1 (c). 

When predicting the heat transfer in turbulent flows 

with the k--i: mod& a vague concept of the turbulent 
Prandtl number is usualI\; introduced to cxprcss the 
eddy difftlsivit~ for hoat via the eddy viscosity. To 
avoid this questionable assumption. two-equation 
heat transfer mod& have been developed by Nagano 
c’f crl. [37. 281. in which as a natural consequence 
the eddy viscosity is used as one of the fund~mcnt~i 
pazmeters in determining the eddy ditrusivity for 
heat. Thus, for the prediction of complex turbulent 
heat transfer, we need a more detailed knowlcdgc ol 
eddy viscosity behavior in flows with separation and 
~-catt~c~~~~~ent. The distributions of the eddy viscosity 
are shown in Fig. 14. As shown in Fig. 14(a). the 
computed results globall>~ agree with the experiments 

(see the peak value and its location). From Fig. 14(b) 
we can grasp the growth mechanism or the eddy vis- 
cosity. The ~ol~lput~tion~ show almost the same tcnd- 
ency in all CZXS: (a) the local maximum of cddq 
viscosity increases linearly with the distance from the 
separation point ; (b) the growth rate becomes satu- 
rated at -\-/XI,, 5 0.7 due to the interaction of the 
detached shear layer with the wall surface and to the 
subsequent blocking efl’cct of the wali: and (c) the 
eddy viscosity maintains an almost constant \~Iuc 

near the reattachment. The eddy viscosity peaks at :L 
location slightly upstream of the flow reattachment 
point. The experimental analysis of Vogel and Eaton 

[ 191 has 4ucidated that the ~~i~~xi~~~ui~~ heat transf‘cr I) 

located slightly upstream ul’ the reattachment point. 
which should bc noted Ibr bring complcteiy consistent 
with the tendency oT the calculated eddy viscosltk. The 
maxintum eddy viscosity at the reattachment point 

llorrn~ili~~d by the Ii-cc stream \&city and the r~- 
attachment length. r, Sf7,,,Y,~. has almost the S;I~C 
value of 0.002 in hi_eh Reynolds numbor HOMES. It is 
surprisinp that, in spite of the calculations unclcr :1 
variety of conditions, such a unique trend of the cdd) 
viscosity is Ibund to exist in all cases of Re,, 13rgc1 
than It?. 

The comparison of the velocity protile dc\cloping 
along the opposite wall in Crtsc I is shocvn in Fig. 
15. 111 the experiment. the wall &car stresses wcrc 
obtained by the so-&led cross plot tcchniquc in which 
the universal log-law was assumed. However, rcccnll), 

Naguno (‘I n(. 129) have indicated experimentally lhat. 
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under the adverse pressure gradient, the universal log- 
law is no longer valid and the friction velocity is higher 
than that obtained by the cross plot technique. The 
most recent DNS data on the boundary layer flow 
with an adverse pressure gradient (Spalart and Wat- 
muff [30]) show the same tendency of the friction 
velocity. Figure 15 indicates that the present com- 
putational results are in complete agreement with 
these latest findings. (Note that the back-step flow 
is subjected to the strong adverse pressure gradient 
shown in Fig. 10.) 

The flow features in the reverse-flow region are 
shown in Fig. 16. It can be seen from Fig. 16(a) that 
the variations of the local maximum of the reverse- 
flow velocity exhibit almost the same trend in accord- 
ance with the experimental data. For the relationship 
between the Reynolds number and the skin friction 
coefficient based on the maximum reverse-flow 
velocity, the computational results give the definite 
dependency as - C, cc Re, I/‘, although slightly higher 
than in the experiments. In the calculations, the point 
of the maximum reverse-flow velocity locates closer 
to the wall than in the experiments. so the calcuiated 
friction coefficient becomes larger. 

The mean velocity profiles in the recirculating 
region are presented in Fig. 17, and the mean (C,) and 
the fluctuating (C;) skin friction coefficients along the 
wall surface are shown in Fig. 18. From Fig. 17, one 
finds the computed velocities are much smaller than 
the conventional log-law profile, which qualitatively 
supports the experiment of Adams and Johnston [31]. 
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FIG. 16. Flow features in the recirculating region: 0 Case 
I;OCase2;~Case3;dCase4;ClCase5:C)Case6;~ 
experiment (Adams) ; W experiment (Eaton) ; (a) streamwise 
variation of maximum reverse-flow velocity; (b) relationship 
between wail-layer Reynolds number Re, and skin friction 

coefficient. 
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FOG. 17. Mean velocity profiles in recirculating region (com- 
putational results correspond to Case 2). 

For the skin frictions shown in Fig. 18, the com- 
putational results are generally higher than the exper- 
imental data of Eaton and Johnston [16]. These dis- 
crepancies in Figs. 17 and I8 may be due to the same 
reason as found in the maximum reverse-flow velocity. 

As mentioned previously, the dissipation rate c on 
the wall is closely related to the fluctuating friction 
coefficient C;. Considering the near-wail limiting 
behavior, the following relation can be derived : 

2 ai 
E, = v(a:+c:) = v- 

b,,+i GO) 

where h, , is the streamwise anisotropic tensor. From 
this relation and equation (12). C,’ is expressed in 
terms of E and h, , as follows : 

Now, as the first estimation, assuming h, , cr 0.5 based 
on the channel flow data (9’;; = 2JFf), we can cal- 
culate C‘ifrom the conlputational results. The present 
crude estimation shown in Fig. 18 is higher than in 
the experiments of Eaton et al. However, as indicated 
by Kasagi et al. [I 71, h, , can become smaller than hi3 
near the reattachment point, so that the calculated C; 
will coincide with the experimental level. Additionally. 
it is worth noting that the variation of C[ is very 
similar to that of the Nusselt (or Stanton) number 
shown by Vogel and Eaton [19]. A concrete discussion 
on this correlation will be given in a following report. 
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FIG. 18. Mean and fluctuating skin friction coefficients on 
step wall (Case 2). 



7. CONCLUDING REMARKS 

WC have proposed an improved model of a low- 

Reynolds-number I\-.): model I+ hcrc II = (1’~) ’ ’ is 
introduced as the velocit) scale ()I‘ turbulcn~c. WC 

have nlso reevaluated the model constant> w that 

both attached and sqxnxtcd wall shear Rows can lx 

predicted acc~~r‘alcl~. 

Purthcrmoro. w invcstigatcd the dctailcd xqxxts 

of the back\+ard-l‘llcing step flop from the WIW 

piitntional results. and obtained the following ffow 

structure: (1) the streamwisc vnriation of‘ the oddl; 

viscosity norm;iiiicd b> lhe l‘rcc strcnm velocit) and 

the r~~tt~~~lini~nt length shows almost the wnc tend- 

cncq at high Reynolds numbers. (7) The xclocity prn- 

files along the opposite fall deviate f’rom the stu~dard 

log-law in the rcattachmcnt rcsion. which is rnainlq 

due to the prwmx ol' an adverse prcssuro pradient 

in ;I separating and reattaching flow. (3) With the 

information 01 lhc anisotropic tensor /I,,. the IIuc- 

tuating friction coctticicnt (I‘; on the fiall c;ln lx csti- 

IlXilCd. 
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